
Stakechain: A Bitcoin-backed Proof-of-Stake

Robin Linus

December 20, 2021

Abstract

We propose an energy-efficient solution to the double-spending problem using a

bitcoin-backed proof-of-stake. Stakers vote on sidechain blocks forming a record

that cannot be changed without destroying their collateral. Every user can be-

come a staker by locking Bitcoins in the bitcoin blockchain. One-time signatures

guarantee that stakers lose their bitcoin stake for publishing conflicting histories.

As long as 34% of the stakers are honest the sidechain provides safety, and with a

67%-majority it provides liveness. Overwriting a finalized block costs at least 34%

of the total stake. Checkpoints in Bitcoin’s blockchain mitigate classical attacks

against conventional proof-of-stake algorithms. A stakechain’s footprint within the

mainchain is minimal. The protocol is a generic consensus mechanism allowing for

arbitrary sidechain architectures. Spawning multiple, independent instances scales

horizontally to a free market of sidechains which can potentially serve billions of

users.

1 Introduction

Bitcoin is a revolutionary alternative to the traditional, government-approved banking

system [1]. However when Satoshi Nakamoto introduced it in 2008 the world’s first

response was: “We very, very much need such a system, but the way I understand your

proposal, it does not seem to scale to the required size” [2]. Ever since numerous scalability

solutions have been proposed. Still, as of today, the Bitcoin network processes less than

seven transactions per second because growing the chain faster reduces decentralization

significantly. In contrast, centralized payment services such as PayPal or Visa serve

billions of users at up to 50,000 TX/s.

Currently, off-chain payments via the Lightning Network are the most promising ap-

proach to scale Bitcoin [3]. They allow a much higher throughput, yet they hardly

scale to billions of users. They still require too many on-chain transactions to open and

1

close payment channels because the required block space grows linearly with the num-

ber of users. Adoption is even further constrained by the inbound-capacity of payment

channels and the need to lock funds for every new user to receive a payment. These

constraints lead to many layers of complexity and a tendency towards centralized and

custodial solutions which contrast Bitcoin’s purpose of being permissionless, trustless and

censorship-resistant.

Sidechains have been proposed as an alternative solution for scalability [4]. They

introduce parallel blockchains enabling payments within a simplistic system similar to

Bitcoin. Yet, their consensus mechanisms depend on trusted federations or Bitcoin min-

ers validating sidechain blocks, which limits social scalability, and thus, security. We

introduce a novel sidechain consensus mechanism with a permissionless, bitcoin-backed

proof-of-stake. This results in a fast, flexible and scalable consensus mechanism, that

enables a free market of trustless sidechains.

2 Bitcoin Stake

It is impossible to produce distributed consensus except by consuming an external re-

source. This is because if block production has no ongoing costs, neither does attacking

the chain [5] [6]. The security of a consensus mechanism is proportional to the amount

of external resources consumed. We anchor our proof-of-stake mechanism into Bitcoin’s

proof-of-work consensus which is computationally, and therefore thermodynamically, very

expensive to change. We leverage the value of bitcoins as an external resource to produce

sidechain consensus. One-time signatures ensure stakers lose their bitcoin stake when

voting on conflicting sidechain histories. This forms a linear record, which is costly to

change without burning significant amounts of resources.

2.1 One-time Signatures

A characteristic of Bitcoin’s digital signature algorithm is that it needs to produce, for

each signature generation, a fresh random value (hereafter designated as nonce). Reusing

the nonce value on two signatures of different messages allows attackers to recover the

private key algebraically.

This nonce reuse vulnerability can be used to discourage stakers from participating in

double-spending attacks [7] [8]. Each staker pre-commits to his sequence of nonces, such

that the system can constrain a vote for the n-th block to be valid only if a staker signed

it using their n-th nonce. This guarantees stakers can not create valid signatures for

conflicting blocks without leaking their private key and losing their collateral.

2

Figure 1: A staker votes for blocks using one-time signatures. A vote for the n-th block is valid
only if it is signed with their n-th nonce. Voting twice with the same nonce leaks the staker’s
private key.

2.2 Staking Contracts

For stakers’ one-time signatures to be scarce, each of them has to lock a collateral such

that the bitcoin network can penalize malicious actors for signing conflicting histories.

In the following we discuss a staking contract which serves as an adaptor to produce a

sidechain consensus from Bitcoin’s consensus.

Our contract expresses: If Alice leaks her key she loses her bitcoins. So, for Alice to

become a staker she locks bitcoins in an output such that:

• Option A: One year later she gets her money back.

• Option B: She can destroy her money right now.

This simple contract is sufficient to make her one-time signatures scarce. If Bob sees

two signatures of her with a reused nonce, Alice leaks her key and loses her stake. In

Appendix A.1 we summarize different implementations of this staking contract in bitcoin

script. We describe the ideal, trustless solution using a Bitcoin Covenant [8]. This is

possible with one of various future bitcoin features such as either SIGHASH_NOINPUT or

OP_CHECKTEMPLATEVERIFY. Furthermore, we discuss two trust-minimized workarounds

that are possible with Bitcoin’s current consensus rules. In Appendix A.2 we describe a

scheme for stakers to commit to a unique sequence of nonces. The key idea is that each

staker forms a chain of nonces by signing their next nonce with their previous signature.

3 Consensus Mechanism

The sidechain’s consensus is anchored into Bitcoin’s proof-of-work consensus. Stakers

are defined by staking contracts included in Bitcoin’s UTXO set. Assuming all sidechain

nodes are running a Bitcoin full node, they implicitly are in consensus about the exact

staker set without exchanging any messages. All randomness is determined by Bitcoin’s

3

proof-of-work, which is studied well [9].

The staker set is determined only by Bitcoin’s blockchain. There are three opera-

tions on the staker set: stake, redeem, and burn. All three are executed in the bitcoin

blockchain. This prevents many classical problems of pure proof-of-stake protocols such as

the nothing-at-stake problem, long-range attacks, stake grinding and costless simulation

[5] [10]. Bitcoin-backed proof-of-stake enables fundamentally more robust mitigations

because Bitcoin’s blockchain offers a reliable ground truth for the status of the staker set

at each point in time.

3.1 Voting for the next Block

The set of stakers is known and so is the number of possible votes per sidechain block.

An election is economically final as soon as there is a majority of votes such that stakers

would have to burn stake to attack it.

The leader is determined from randomness derived from bitcoin’s most recent block.

The leader proposes a signed sidechain block and all other stakers confirm that block by

signing it, too. Once 34% of stakers voted for a block it cannot be reverted without burn-

ing stake. A block is considered final once a supermajority of 67% signed it. Changing

finality costs at least 34% of all stake. As soon as the next leader receives a final block,

it starts waiting one minute until it proposes a next block.a

If a leader does not propose a block within a given time then all other stakers start broad-

casting skip messages for that block. Once 67% of stakers signed a skip message that

block is skipped and the next round begins with a block proposed by the next staker.

3.2 Safety and Liveness

By definition, a decentralized system must be susceptible to malicious majority attacks

whether by hashrate, stake, or other permissionlessly-acquirable resources.

B1

B′
2

B2B0 67%

67%

Figure 2: Finalizing a block requires a supermajority of 67%. Therefore, the chain can fork
only if an attacker controls at least 67% of all stake and at least 34% of all stake is slashed.

In our mechanism, forks require burning 34% of all stake. Forks are impossible if 34%

of all stakers are honest or offline. Violations of the 34% assumption can be mitigated to

some degree by selecting the chain that requires the most capital to burn to attack its

aA staker is incentivized not to wait for too long before broadcasting their block because otherwise
the other stakers will skip it. Also they cannot speed up the block time much, as we will see in the next
chapter.

4

finality. That means a block with more votes wins over a block with fewer votes. E.g.,

in the ideal case a block has 100% of all votes; then 100% of the total stack has to get

burned to overwrite that block. Such a supermajority block finalizes all previous blocks,

because overwriting any previous block requires to also overwrite that supermajority block

when the fork reaches the same height. Waiting for a supermajority block to confirm a

transaction has a similar effect as waiting for confirmations in a proof-of-work mechanism,

because it increases the cost to attack the chain.

B1

B′
2

B2B0 99%

67%

Figure 3: The fork with the most votes wins because reverting it requires the most stake to
burn.

B0 B1 B2 B4B3Blocks : B5 B6 B7

67% 67% 100% 67%

TX

67%...V oting results :

× ×
67% 67%

Figure 4: Finality of a transaction depends on the best voting result that comes after it. In this
example, the votes for block B6 guarantee that 100% of all stakes have to get burned to reverse
the transaction in block B3.

To harden voting results, the next leader commits in their block to all votes received

for the previous block. At least 67% of all votes are required for a successor block to

be valid. Honest stakers try to collect as many votes for the preceding block as possible

while waiting to broadcast their current block. Majorities larger than 67% make finality

proportionally more costly to attack.

Liveness requires a honest majority of 67%. Thus, an attacker can halt the network

as long as 34% are offline or malicious. They can halt the chain until honest stakers stake

enough bitcoins such that they can form again a 67% majority to fill up the missing votes

to finalize and unstall the current block. In the worst case 100% of all stakers are offline.

Then new stakers have to stake two times the total stake to form a new 67% majority.

B1 B2B0 66%

34%

Figure 5: Liveness requires a majority of 67%. So, 34% malicous or offline stakers can halt the
chain.

5

However, introducing this recovery mechanism for stalled chains introduces a new attack

vector. Now we have to mitigate the case that newer majorities overwrite older majorities’

final blocks. We define the age of a staker set as the bitcoin block height at which the

last staker joined that set. Honest full nodes select a block by an earlier majority over a

block by a newer majority. Therefore, a block cannot get overwritten by a majority that

formed after that block was finalized. This ensures again that an attacker has to burn at

least 34% of all stake to create a fork.

For more strict finality, we enforce sideblocks to commit to the most recent bitcoin

block hash.

A0 A1 A2 A3

B0 B1 B2 B4B3 B5 B7B6

Bitcoin Chain

Stakechain B8× ×

Figure 6: Sidechain blocks have to commit to bitcoin block hashes. The height of the bitcoin
block must be at least the same height as in the preceding sideblock. In this example there are
at most 3 sideblocks per mainblock. This ensures basic synchronicity.

We allow new stakers to change previous majorities only up to a certain number of

bitcoin blocks in the past. E.g. Stakers can vote at most one week (1008 bitcoin blocks)

back in the past. This implies, if the chain ever stalls for a week it will stall indefinitely

until the current stakers finalize the current block. New stakers cannot overwrite a one

week old chain. However, if that happens and there’s a malicious 67% majority, then the

sidechain’s incentive model must be already fundamentally broken in some other way.

A0 A1 A2 A3

B0 B1 B2 B4B3

Set of Stakers

V otes for B4

B′
4

B5 B6 B7

B′
5

2 31 5 64 8 970

× ×

Figure 7: In this example the older stakers voted for B4 but a newer majority votes for B′
4.

This chain split will get resolved at the latest in slot number 9, because then the set of stakers
is unambiguous again. Honest nodes don’t accept a rewrite by a newer majority, if they already
know a block finalized by an older majority. Additionally, the newer majority can vote at most
1 week back in the past to recover a stalled chain.

6

An even stricter model is to enforce stakers to periodically publish signatures in the

bitcoin blockchain to remain within the staker set. However, this costs block space and

fees, so we want to minimize the on-chain footprint. The most simple anchor is to let

new stakers commit to sidechain blocks within their funding transaction for the staking

contract within the bitcoin blockchain. Incentives are aligned if we enforce that new

stakers can only vote on the same chain they committed to. Other stakers implicitly sign

the on-chain commitment by accepting the new staker’s votes and signing it in subsequent

blocks.

3.3 Ongoing Cost to Attack the Chain

One might argue that time value of locked bitcoins is too cheap to derive a secure con-

sensus. That is a misunderstanding of the fundamental underlying market mechanism.

In Bitcoin, the proof of work security is not determined by the price of electricity, but

by the Dollar value of the block revenue. Miners have an incentive to spend about

1 revenue = 1 reward + fees ≈ 7.25 BTC ≈ $250000

to produce a block (as of June 2021). The mining difficulty adjustment stabilizes this

price of block production. The cost of block production equals the cost of attacking the

chain. So, more demand for Bitcoin leads to a higher bitcoin price and thus, a higher

value of the block revenue and subsequently, to more security. The exact same market

forces align the incentives for our proof of stake. In a free market the total time value

of all staked bitcoins converges against 1 sidechain revenue per block. Whenever there

is less time value locked, someone will stake their bitcoins to earn the cheap sidechain

revenue.

Therefore, the ongoing cost for an attacker to stall the chain is about 1 sidechain

revenue per block time. This is independent of the consumed resource. Security depends

only on the value of the sidechain’s revenue. The sidechain asset price is mostly driven

by usage and resulting network effects. Thus, a sidechain provides security proportional

to the network effect of its user base. The seemingly low investment of time value of

bitcoins is automatically priced in by the competition for the stakechain rewards.

Additionally, it is important to notice that overwriting the chain costs slashing 34%

of all stake, which is orders of magnitudes more expensive than a year worth of time

value of that stake. For that reason, stakechains have a quick settlement finality because

a reorg is significantly more expensive than the cost of block production.

7

3.4 Limitation: Pegs and the Altcoin Problem

This system requires an independent asset per stakechain. A stakechain’s security is

limited by its asset’s value. Only if a sidechain’s revenue is sufficiently valuable, it can

motivate many Bitcoin holders to protect it. Therefore, only large sidechains with lots of

users and valuable assets can provide security. Small sidechains are insecure.

We do not want to introduce another speculative asset because that creates unneces-

sary friction to users. Trustless two-way pegs between bitcoin and sidechains are an

ongoing research topic. As of today there are at least two workarounds to peg sidechain

assets to BTC. For example, the peg of the Liquid Sidechain is a federated 2-way-peg. A

trustless alternative is a perpetual one-way peg [11]. It dampens the price fluctuation of

a sidechain’s asset. Additionally, it is possible to demand from stakers to burn a certain

amount of BTC to become a staker. Those burned BTC can be issued in the sidechain as

block subsidy. Existing research [12] and future research on trustless two-way pegs e.g.,

based on zero-knowledge proofs [13] can be developed and deployed on top of a stakechain

consensus.

4 Conclusion

We have proposed a consensus-mechanism that potentially scales to a global payment sys-

tem. We started with the usual framework of a sidechain, which provides strong control of

ownership, but is incomplete without a trust-minimized way to prevent double-spending.

To solve this, we proposed a bitcoin-backed proof-of-stake consensus mechanism that

quickly becomes economically impractical for an attacker to change if honest nodes con-

trol a majority of stakes. Stakers and leaders are elected via Bitcoin’s consensus with

little coordination. Nodes can leave and rejoin the network at will, accepting checkpoints

in the bitcoin blockchain as proof of what happened while they were gone. Stakers can not

create conflicting histories without losing their Bitcoin collateral. They vote with their

signatures, expressing their acceptance of valid blocks by signing them and rejecting in-

valid blocks by refusing to sign them. Any needed rules and incentives can be enforced

with this consensus mechanism. Spawning multiple stakechains scales horizontally to

potentially billions of users.

References

[1] Satoshi Nakamoto et al. Bitcoin: A peer-to-peer electronic cash system. 2008.

[2] James A. Donald. The cryptography mailing list - bitcoin p2p e-cash paper. Bitcoin

Stack Exchange.

8

[3] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain

instant payments, 2016.

[4] Adam Back, Matt Corallo, Luke Dashjr, Mark Friedenbach, Gregory Maxwell, An-

drew Miller, Andrew Poelstra, Jorge Timón, and Pieter Wuille. Enabling blockchain

innovations with pegged sidechains. URL: http://www. opensciencereview.

com/papers/123/enablingblockchain-innovations-with-pegged-sidechains, page 72,

2014.

[5] Andrew Poelstra et al. Distributed consensus from proof of stake is impossible. 2014.

[6] Cristina Pérez-Solà, Sergi Delgado-Segura, Guillermo Navarro-Arribas, and Jordi

Herrera-Joancomart́ı. Double-spending prevention for bitcoin zero-confirmation

transactions. International Journal of Information Security, 18(4):451–463, 2019.

[7] Tim Ruffing, Aniket Kate, and Dominique Schröder. Liar, liar, coins on fire!: Pe-

nalizing equivocation by loss of bitcoins. In Proceedings of the 22nd ACM SIGSAC

Conference on Computer and Communications Security, pages 219–230. ACM, 2015.

[8] Malte Möser, Ittay Eyal, and Emin Gün Sirer. Bitcoin covenants. In International

Conference on Financial Cryptography and Data Security, pages 126–141. Springer,

2016.

[9] Joseph Bonneau, Jeremy Clark, and Steven Goldfeder. On bitcoin as a public ran-

domness source. IACR Cryptology ePrint Archive, 2015:1015, 2015.

[10] Jonah Brown-Cohen, Arvind Narayanan, Alexandros Psomas, and S Matthew Wein-

berg. Formal barriers to longest-chain proof-of-stake protocols. In Proceedings of the

2019 ACM Conference on Economics and Computation, pages 459–473. ACM, 2019.

[11] Ruben Somsen. 21 million bitcoins to rule all sidechains: The perpetual one-way

peg. Medium, 2020.

[12] Jason Teutsch, Michael Straka, and Dan Boneh. Retrofitting a two-way peg between

blockchains. arXiv preprint arXiv:1908.03999, 2019.

[13] Alberto Garoffolo, Dmytro Kaidalov, and Roman Oliynykov. Zendoo: a zk-snark ver-

ifiable cross-chain transfer protocol enabling decoupled and decentralized sidechains.

CoRR, abs/2002.01847, 2020.

[14] Pieter Wuille. Will segwit allow for m of n multisig with very large n and m? Bitcoin

Stack Exchange.

9

[15] Rosario Gennaro and Steven Goldfeder. Fast multiparty threshold ecdsa with fast

trustless setup. In Proceedings of the 2018 ACM SIGSAC Conference on Computer

and Communications Security, pages 1179–1194. ACM, 2018.

[16] Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille. Simple

schnorr multi-signatures with applications to bitcoin. Designs, Codes and Cryptog-

raphy, 87(9):2139–2164, 2019.

10

A Appendix

A.1 Staking Contracts in Bitcoin Script

Currently, burning funds is not supported in Bitcoin script. Committing to a certain

spending transaction requires a construct called Covenantsb . Yet, upcoming Bitcoin

features such as SIGHASH_NOINPUT c or. OP_CHECKTEMPLATEVERIFY d or OP_CAT allow

trustless covenants. For now, we need a workaround to implement the staking contract.

In the following we discuss solutions. All of these trust-minimizing workarounds are

highly undesirable additional complexity. Fortunately, in the long term, we will certainly

have some clean solution for covenants.

A.1.1 Trust-minimized Workaround 1

A simple solution is to introduce a trusted party, say, Bob:

• Alice creates a funding transaction with the following output:

– Alice can spend her money in one year.

– Alice and Bob can always spend her money collaboratively.

• Bob pre-signs and publishes a punishment transaction:

– burn her collateral now to address 0x000...000 (if Alice agrees).

• Bob immediately deletes his secret key (in case his machine gets compromised).

There is no counter-party risk here for Alice, because she executes her funding transac-

tion only after she received Bob’s signature for the punishment transaction and completed

her setup.

For the system to minimize trust in Bob, multiple parties can participate and if only

one is honest and deletes their key, then this scheme is secure. Bitcoin script currently

supports more than 60 participants per multi-signature transaction [14].

Containing more than 60 signatures, the punishment transaction becomes large and

expensive, but as long as the staker is honest, the transaction doesn’t need to be in-

cluded in Bitcoin’s blockchain. To incentivize Bitcoin miners to execute the punishment

transaction quickly in case of misbehavior, it pays a high miners fee.

It is possible to further minimize trust in single parties by using ECDSA signature

aggregation to allow for thousands of Bobs participating in a single combined signature

bhttps://medium.com/blockstream/cat-and-schnorr-tricks-i-faf1b59bd298
chttps://github.com/bitcoin/bips/blob/master/bip-0118.mediawiki
dhttps://github.com/bitcoin/bips/blob/master/bip-0119.mediawiki

11

[15]. When Schnorr signatures become available in Bitcoin, such aggregated signatures

will become more simple because of the linearity of Schnorr’s scheme [16].

The Bobs could be a trusted federation or a percentage of the current stakers. With

aggregated signatures they could also be a significant percentage of current coin holders.

The trusted parties sign blindly to reduce the risk of censorship. A simple scheme exploits

that Bitcoin transactions use double SHA256. Thus, Alice can ask Bob to sign the single-

round SHA256 hash of her transaction. The second round is Bob’s hashing function for

his signature algorithm. This way Bob doesn’t learn what he signs until Alice publishes

her contract.

A.1.2 Trust-minimized Workaround 2

The bitcoin mailing list member, ZmnSCPxj, came up with the following trust-minimized

covenant construction based on replace-by-fee, which requires no softfork.

We can implement the staking contract with a simple

<one year> OP_CHECKSEQUENCEVERIFY OP_DROP <A> OP_CHECKSIG

OP_CHECKSEQUENCEVERIFY ensures, as a side effect, that the spending transaction opts in

to replace-by-fee. Thus, if the pubkey <A> is used in a single-sign signature scheme (which

reveals the privkey if double-signed), then at the end of the period, anyone who saw the

double-signing can claim that fund and thus act as “Bob”. Indeed, many “Bob”s will

act and claim this fund, increasing the fee each time to try to get their version onchain.

Eventually, some “Bob” will just put the entire fund as fee and put a measly OP_RETURN

as single output. This “burns” the funds by donating it to miners.

From the point of view of Alice this is hardly distinguishable from losing the fund right

now, since Alice will have a vanishingly low chance of spending it after the collateral period

ends, and Alice still cannot touch the funds now anyway. Alice also cannot plausibly

bribe a miner, since the miner could always get more funds by replacing the transaction

internally with a spend-everything-on-fees OP_RETURN output transaction, and can only

persuade the miner not to engage in this behavior by offering more than the collateral is

worth (which is always worse than just losing the collateral).

A OP_CHECKTEMPLATEVERIFY would work better for this use-case, but even without it

you do not need a trusted party to implement the staking contract.

Drawback of this solution is that cheating stakers are not immediately removed from

Bitcoin’s UTXO set. Yet, this might be a decent tradeoff because we have a succinct

proof to exclude a cheating staker: knowledge of his private key.

12

Another drawback is that it requires trust in miners. If Alice cooperates with a

significant share of Bitcoin’s hash power, she has proportional chances of mining the

transaction herself. Then she would not have any cost of attacking the chain.

A.2 Staker Signatures

In this chapter we discuss details of the stakers signatures. We explain how to pre-commit

to a particular nonce per block efficiently. Finally, we explain a scheme for better hot

key security.

A.2.1 Compact Nonce Commitments

Constructed naively, stakers would have to pre-commit to millions of nonces within their

funding transaction. A more efficient construction is to let stakers subsequently commit

to their next nonce by signing it within their previous signature. This amortizes the in-

clusion proof size to basically zero. Furthermore, each staker has to store only one nonce

at each point in time.

Jeremy Rubin contributed this scheme for constant-sized commitments to sequences

of nonces. Furthermore, he implemented a staking contract in Sapioe .

A.2.2 Hot Key Security

Hardware wallets are usually stateless and therefore they’re incompatible with nonce

commitments. Thus, to protect the stakers’ nodes, they can use a staking key to sign

sidechain blocks and a seperate redeem key to spend the bitcoin deposit once it is un-

locked. Until then, the redeem key remains in a cold wallet. Nodes having access only to

the staking key are a much less attractive target for attackers.

ehttps://github.com/sapio-lang/sapio/blob/master/sapio-contrib/src/contracts/staked signer.rs

13

